Zero Discharge Plan (ZDP) Initiatives Taken by DOE and It's Present Status

Syed Nazmul Ahsan Director (Environmental Clearance) Department of Environment Dhaka 25/02/2016

What is Zero Discharge

- Zero discharge theoretically means there is no discharge of any kind of pollutants into the surrounding environment
- Some time it is also referred as end-of-pipe treatment.
- Quite often, zero discharge and zero liquid discharge are used in the same meaning.
- In the end of the 1980's, together with increased environmental awareness within society and industry, "Zero discharge" changed from a technical description of 100% wastewater recycling to a "goal". The principle of "zero discharge" is recycling of all industrial wastes (including waste water). In other words, Zero discharge means EMS or 3R's/4R's.

Initiation of Zero Discharge Plan (ZDP) in Bangladesh

<u>cUf,wg</u>

 6ô cÂevwl©K cwiKíbv (SFYP 2011-2015)-i "Chapter 10 : Environment, Climate Change and Disaster Risk Management" Gi Aax‡b Environmental Management Target-G "Promote Zero Discharge of Industrial Effluents" D‡jøL i‡q‡Q (c"ôv-454, cvU©-2)| GQvov, H GKB Aa¨v‡qi AvIZvq Environmental Management Objectives-G "To Promote Zero Discharge of Industrial Effluents" Ges "To Establish Environment Management Systems (EMS) in Industries for Pollution Control" D‡jøL Kiv n‡q‡Q (c"ôv-461, cvU©-2)|

Initiation of Zero Discharge Plan (ZDP) in Bangladesh (contd.)

- miKv‡ii GB cwiKíbv ev⁻ĺevq‡bi j‡ÿ¨ cwi‡ek Awa`ßi D‡`¨vM †bq Ges MZ 06/09/2012 Zvwi‡L RvixK...Z cwi‡ekMZ QvocÎ welqK KwgwUi 341Zg mfvq Zij eR©¨ wbM©gYKvix wkícÖwZôv‡bi AbyK,‡j cwi‡ekMZ QvocÎ cÖ`v‡bi mycvwikKv‡j cÖ`Ë Ab¨vb¨ kZ©vejxi cvkvcvwk wR‡iv wWmPvR© cø¨vb `vwL‡ji kZ© Av‡ivc Kiv ïiæ nq|
- cieZx©‡Z MZ 02/12/2012 Zvwi‡L RvixK...Z cwi‡ekMZ QvocÎ welqK KwgwUi 348Zg mfvq mKj wefvMxq/AvÂwjK/gnvbMi Kvh©vjq‡K mKj ai‡bi Zij eR©¨ wbM©gYKvix wkícÖwZôv‡bi cwi‡ekMZ QvocÎ bevqbKv‡j wewa †gvZv‡eK cÖ‡hvR¨ kZ©vejxi cvkvcvwk wR‡iv wWmPvR© cø¨vb`vwL‡ji kZ© Av‡iv‡ci Rb¨ wm×všÍ M"nxZ nq|
- MZ 04/05/2014 Zvwi‡L RvixK...Z cwi‡ekMZ QvocÎ welqK KwgwUi 375Zg mfvq cÖ_g GKwU wkícÖwZôv‡bi AbyK,‡j wR‡iv wWmPvR© cø¨vb Aby‡gv`b Kiv nq|

Three Years Long Wastewater Recycling & Zero Discharge Plan Based on 3R

Three Years Long Wastewater Recycling & Zero Discharge Plan Based on 3R

S/N	Description	Expected Area/	Projection Time									Remarks			
		Use Area	Feb/09	Mar/12	Apl/13	May/13Ja n/14	July/14Dec /14	Jan/15 Jun/15	July/15 Dec/15	Jan/16 Jun/16	Jul/16 Jun/16	Jul/16 Jul/17	Aug/17 Dec/17	Jan/18 To Continue	
01	Hot water recovery	Process /dye House		-											Reduce: Save H ₂ O 80m ³ /day
)2	Medical Solis Waste Management (Day Care)	Health Care Centre	V	Â										Development Work: Energy saving Process	Contact with Prisom Bangladesh for medical waste
)3	Bio Gas Plant	Kitchen		>										Development	Reduce : ton 144.54 CO ₂ e/yr.
04	Energy saving practice	Use of T5& LED light, Servo motor, heat recovery from exhaust, condensed & flash stream recovery, heat recovery from economizer, hot water recovery use in dye,		Į	Ą									EMS certification Research project	Reduce and Reuse: Reduce electricity consumption and reuse natural resource Reduce CO ₂ emission : ton 2257.31 CO ₂ e/year
)5	Rain water harvesting	Process /dye House			V		\sim								Reduce : Save H ₂ O 76m ³ /day
)6	WTP new reserve tank for backwash water storage (Civil & Electromechanical)	Process /dye House						Å		Å					Reuse: Save H ₂ O 95 m ³ /day
07	Anaerobic Tank for ETP Sludge treatment (Experimental)	Pilot Scale Bio Gas Tank													Reduce: sludge volume & applicable for crop.
)8	Tree Plantation	Open Area								Ű	>				40% Greenery Area Coverage
09	Wastewater Re-cycle First Phase- Multi grade filter, Activated carbon filter, Micro filtration & new reservoir for ETP outlet (Civil Work)	Toilet Flash Car Washing ETP Chemical mixing/ Dosing Tank Chemical Drum Washing Gardening/road Watering Floor cleaning Firefighting								Ĭ	>				Rense : Save H ₂ O 300 m ³ (day 20% H ₂ O reuse from ETP
10	Salt Recovery Plant and Wastewater Segregation	Process /dye House								ļ	>				Considering to separate color water and
11	Wastewater Recycling Second Phase (RO or Better Technology)	Process /dye House										_	>	1	Recycle: 80% H ₂ O from ETP outlet
12	Magneto Hydro Dynamics	Boiler and Generator													Reduce: Gas consumption 15%
13	Sewage Treatment Plant (STP)										⇔				
4	ETP Sludge Management	Bio Fertilizer/others		Ongoing project with Bangladesh atomic energy commission from June 2012 to continue			Treatment for Land Filling								
5	Process Development	Dye Area: 1 Process Modification 2 Chemical Selection 3 Dyes Selection		It's a continuous process. At Dyes & chemical selection can reduce water consumption that we developed and still researches are going on.				Any findings or developments, we will apply future.							
6	Water Flow Meter Installation	Process House	Continuous process At present, we have 8 water flow more.												

Step 01: Hot water Recovery:

Projection Time: -----

Condensed & Flash steam recovery system: Condensed & Flash Steam from dye and garments recovered to feed water tank that use to pre heat the boiler again up to 90-92°C. Benefits are as follows:

Reduce/ save H ₂ O	Natural gas save	Reduce CO ₂ emission
24,000 m ³ /year	285714 m³/year	ton 635.86 CO ₂ e/year

Note: This Carbon calculation have done with a reference of IPCC & Defra /DECC's GHG conversion factors.

Step 02: Medical Solid Waste Management:

Projection Time: -----

We segregate and label solid waste and store in waste management selected area with maintaining register. For medical waste management, we contacted with Prism Bangladesh which is listed medical waste management organization in Bangladesh.

Volume of Medical waste	10 kg/six months	
-------------------------	------------------	--

Step 03: Bio Gas Plant from Kitchen Waste:

Projection Time: -----

As burning biogas is simply recycling of CO_2 in biosphere & plant use this CO_2 during photosynthesis. So biogas plant automatically reduces CO_2 in atmosphere.

Benefits are as follows:

Reduce global warming by burning CH_4 gas which is 21 times stronger than CO_2

Reduce natural grid gas consumption in cooking area

The slurry increase soil fertility and use in agriculture fields.

Environment sound management by eliminate odors

Name of items	Amount /volume
Employees	7000
Kitchen waste	800 kg/day
Plant Capacity	25 m3/day

Step 04 : Energy Saving Practice:

Projection Time: -----

Practices	Saving electricity/gas/water (yr)	CO ₂ reduction
Conventional florescent light replaced by T5 tube	88359 KWh/year	ton 16.22 CO ₂ e/year
LED in sewing machine	247104 KWh/year	ton 45.36 CO ₂ e/year
Servo drive with motor in sewing machine	673920 KWh/year	ton 123.73 CO ₂ e/year
Installation Exhaust in heat recovery unit	292032 m3/year (16% save of total consumption)	ton 649.92CO ₂ e/year
Condensed & Flash steam recovery	285714 m3 gas/year 24,000m3 H ₂ O/year	ton 635.86 CO ₂ e/year
Heat recovery through Economizer	85714m3 gas/year	ton 190.7 CO ₂ e/year
Hot water Reuse in dye machine	267589 m3 gas/year 49950 m3 H ₂ O/year	ton 595.52 CO ₂ e/year

Step 05: Rain water Harvesting:

Projection Time: -----

Roof top area for rain water harvesting.

According to Dhaka meteorological department, for year long data:

Total area	Volume of rain fall	Save/day
11700 m ² roof top	27799 m ³ /year	76 m ³ /day

Weather: Annual average temperature of Gazipur district is maximum 36°C and minimum 12.7°C. Annual rainfall is 2376 mm. with a reference of Bangladesh metrological department on 11th November/2013

Step 06: WTP new reserve tank for backwash water storage: Projection Time: -----

WTP- 01 (40m ³ /day)	WTP- 02 (80m ³ /day)			
Back wash 10 m ³ /day (go to ETP)	Back wash 50 m ³ /day (go to ETP)			
Rewash 15 m ³ /day (go to WTP	Rewash 25 m ³ /day (go to WTP raw			
raw tank)	tank)			
Brain Wash 25 m ³ /day (go to	Brain wash 60 m ³ 2 days interval			
reserve tank for regeneration)	(go to reserve tank for regeneration)			
Reuse volume 95 m ³ /day (Rewash + Brain Wash volume + Brain wash				
volume+ Rewash)				

Step 07: Tree Plantation:

Projection Time: -----

At present existing green area 30% (164100 Sft) It will be increased in future, 40% (218800 Sft) green coverage = 303.89 Katha

Total Land area = 547000 Sft Building area= 200000 Sft Green 40% (218800 sft) = 303.89 Katha Open space including road 128200 Sft **Step 08: Anaerobic Tank for ETP Sludge treatment (Experimental):** Projection Time: -----

Raw materials: ETP sludge

We have contacted with Grameen Shakti for portable crystal biogas plant. Their engineers will conduct the research in pilot scale in ECHOTEX premises.

Research period: successful research then large scale anaerobic tank construction.

Benefits: Suitable for landfill

Step 09: Wastewater Recycling 1st phase:

Projection Time: ------

20% water reuse i.e., 360 m³/day. Or 15 m³/hr. Multi grade filter, Activated carbon filter, Micro filtration & new reservoir for ETP outlet (civil)

Water Calculation for Toilet Flushing:

Total no of people worker with management = 7000 person Water require = 30 liter per capita per day. (Working hours 10) Amount of water = $7000X30 = 210 \text{ m}^3/\text{day.}$

Water Calculation for Gardening and Road Watering:

Total Land area = 547000 Sft, Building area= 200000 Sft Green 40% (218800 Sft) = 303.89 Katha, Open space including road 128200 Sft According to the rate of entry of water from surface to the soil, infiltration rate is 1.25 to 2.5cm per hour. e.g. - sandy loam/ silt loam soils. Infiltration rate, f = 2.0/100 m X 24 day = 0.48 m/day. Water discharge, $\mathbf{Q} = 72 \text{ m}^3/\text{day}$. Area, A = ? So, Q = Axf, 72 m³/day = AX 0.48 m/day A = (72 m³/day)/0.48 m/day = 150 m² = 1614 Sft = 2.24 Katha.

Step 09: Wastewater Recycling 1st phase : (Continued)------

Water Calculation for Floor and Car Washing:

Total no of Car = 30 Nos. Water require = 200 liter per car. Amount of water = $30 \times 200 = 6 \text{ m}^3/\text{day}$ Area of Total Floor (dyeing + Washing) = 63000 Sft.Water require = 0.20 liter per sft. Amount of water = $63000 \times 0.20 = 12 \text{ m}^3/\text{day}$

ETP Chemical Mixing Tank: 50 m³/day Chemical Drum Washing: 04 m³/day Fire Fighting (On Demand) and Others: 06 m³/day

Step 10: Salt Recovery Plant and Wastewater Segregation

Projection Time: -----

Benefits:

Reduce pressure in ETPReduce water consumption in dye houseReuse salt in Dye

Step 11: Wastewater Recycling 2nd phase

Projection Time: -----

Benefits:

80% water recycling
Reduce water extraction pressure
80% water reuse i.e., 1440 m³/day. Or 60 m³/hr.

Treatment Process:

Treated Water Reservoir cum Sedimentation Tank, Flocculation, Lamila Clarifier, Filter Feed Sump, Multigrade Filter, Activated Carbon Filter, Softner unit, RO & Micron Filter Feed Sump, Micron Filter, Reverse Osmosis Reservoir, UV sterilizer. **Step 12: Magneto Hydro Dynamics**

Projection Time: -----

Benefits:

Reduce Natural Grid gas consumption 20% from present use in Boiler and Generator.

Uses are in Boiler and Generator

Step 13: Sewage Treatment Plant (STP)

Projection Time: -----

Recently see that our canal and river pollution is occurred not only from Industrial outlet but also from human and house hold wastage. The direct discharge of sewage without treatment makes the water pollution become more and more serious. In order to improve the serious environment and living conditions, the construction of sewage treatment device will be added into the industrial area construction. This measure will produce an indelible effect on environment improvement. So it is exact time to initiate program for minimize water pollution from this aspect. We suggested that where residing above 500 peoples there must be installed STP, instead of conventional septic tank and soak well. It is studied that the installed septic tank and soak well is not properly maintained by the authority and overflowing the human and house hold, house sprayed the nature and pollutes the environment by calculating 1:50 liters (Toilet Flushing 30 Liters and Others 20 Liters) water uses.

Step 13: Sewage Treatment Plant (STP): (Continued)

Wastewater Calculation:

Total no of people worker with management = 740 person

Water require = 50 liter per capita per day

Amount of water = 740 X $50 = 37 \text{ m}^3/\text{day.} = 1.52 \text{ m}^3/\text{hr}.$

According to the safety factor, we have quoted for the Sewerage Treatment Plant (STP) that will be capable of treating 48 m³ of waste-water per day of 24 working hours at the rate of 2 m³/hr. This waste water has been considering after pre-treatment by individual septic tank and soak wall.

Calculation of Area for Sewage Treatment Plant (STP):

Effluent flow from Septic Tank = $48 \text{ m}^3/\text{day}$ (According to the safety factor).

According to the rate of entry of water from surface to the soil, infiltration rate is 1.25 to 2.5cm per hour. e.g. - sandy loam/ silt loam soils.

Infiltration rate, f = 2.0/100 m X 24 day = 0.48 m/day.

So, Q = Axf, 48 m³/day = AX 0.48 m/day

Area, $A = (48 \text{ m}^3/\text{day})/0.48 \text{ m}/\text{day} = 100 \text{ m}^2$

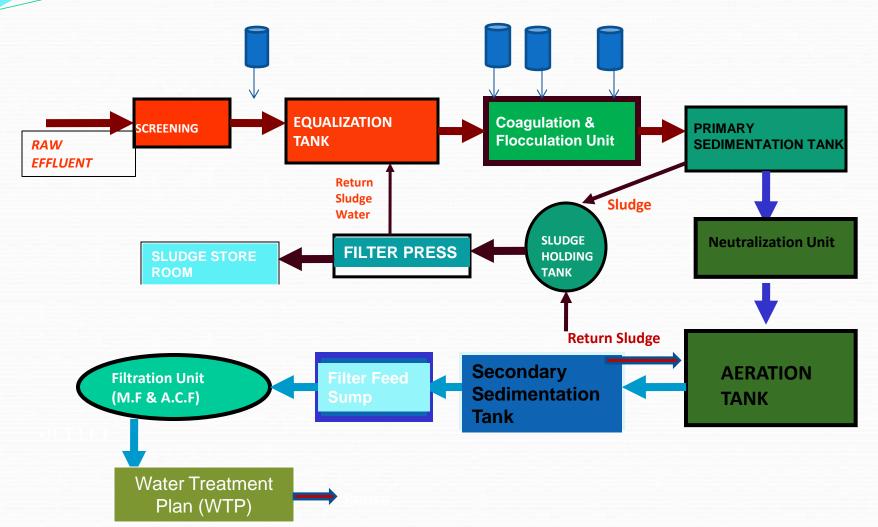
Buildings and structures in this project are: equalization tank and grit chamber, primary sedimentation tank, biological contact oxidation tank, secondary sedimentation tank, disinfection tank, sludge homogenization tank, sludge dewatering house and blower house.

Step 14: ETP Sludge Management:

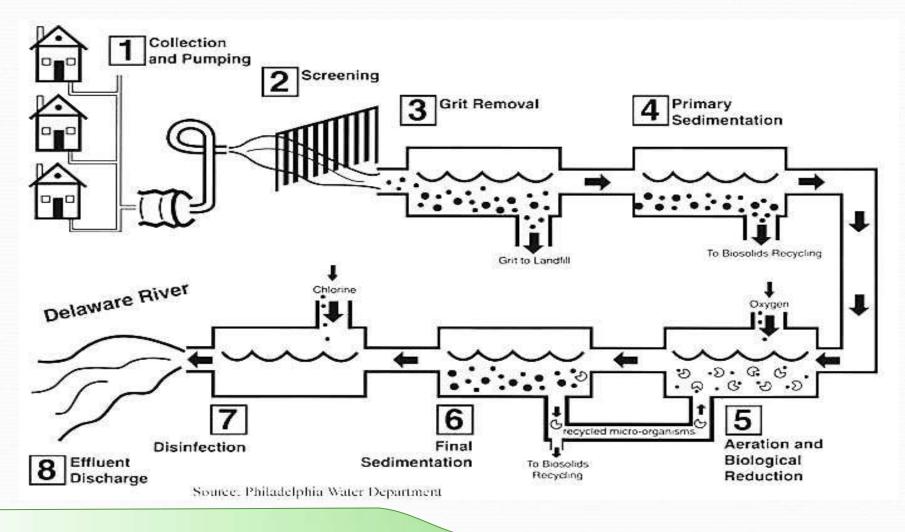
Projection Time: -----

Ongoing project with Bangladesh atomic energy commission from June 2012 to continue Treatment for Land Filling

Step 15: Dye Process Development:

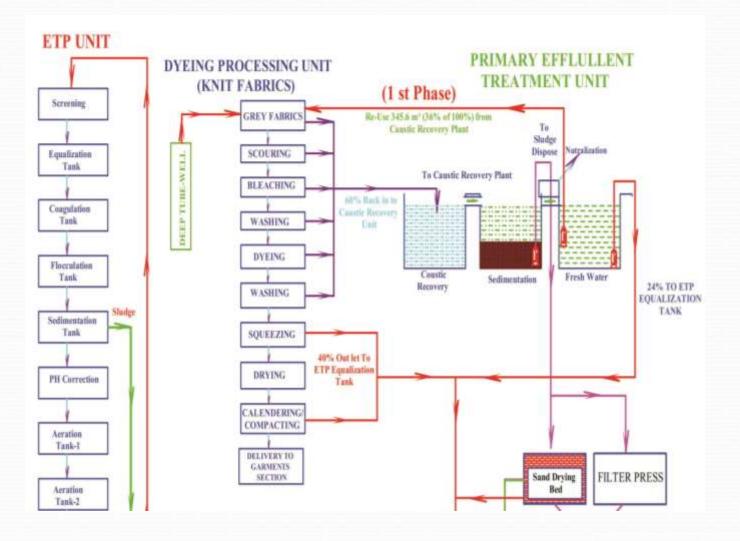

Projection Time: -----

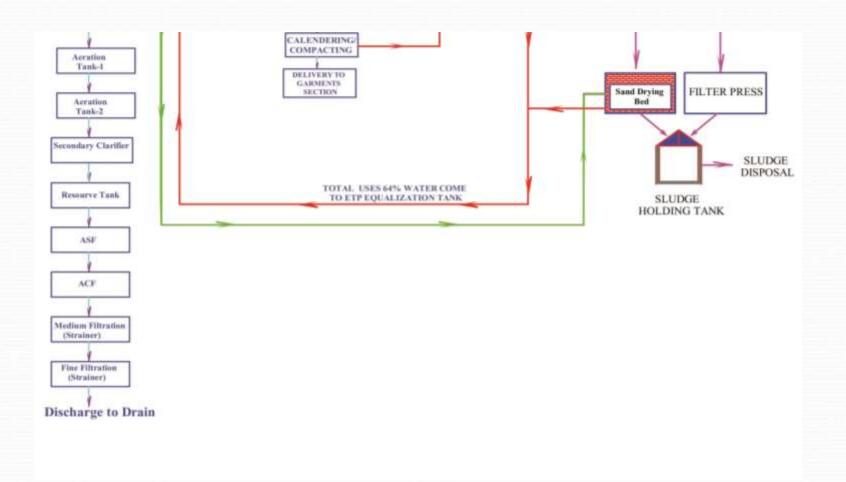
Continuous process:


Dyes & chemical selection can reduce water consumption that we developed and still researches are going on. Any findings or developments, we will apply future. Organic Dyes/Green acid Step 16: Water Flow Meter Installation/Online Monitoring: Projection Time: -----

Continuous process At present, we have 8 water flow meters.

Process flow diagram of ETP:

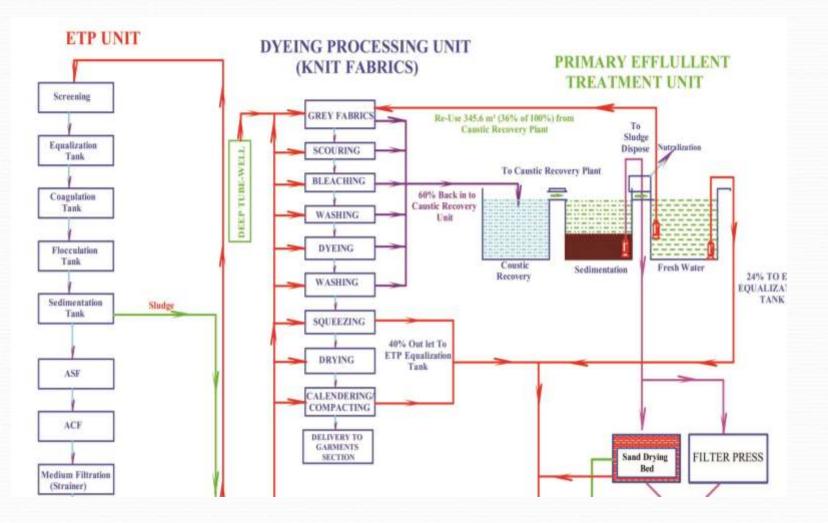

Process Flow Diagram of Sewage Treatment Plant (STP):

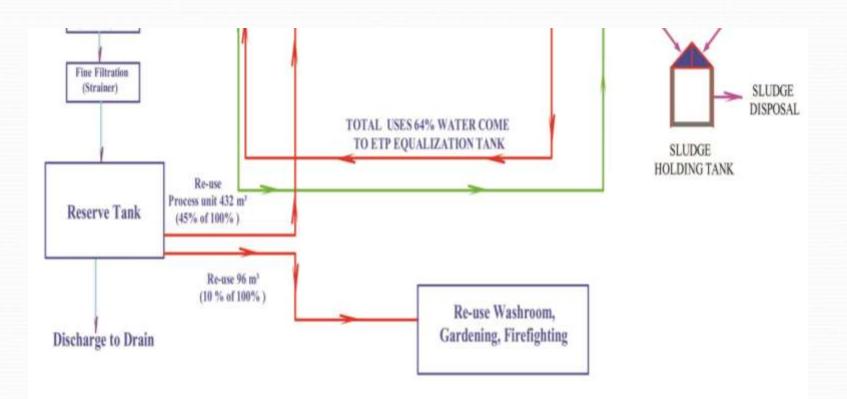


Wastewater Re-cycling 1st Phase.

- Total Waste water Generation in this factory 960 m³/day.
- 36% Water re-use in 345.6 m³/day or 14.4 m³/hr.

1st Phase-36% of 100% Re-cycle Process

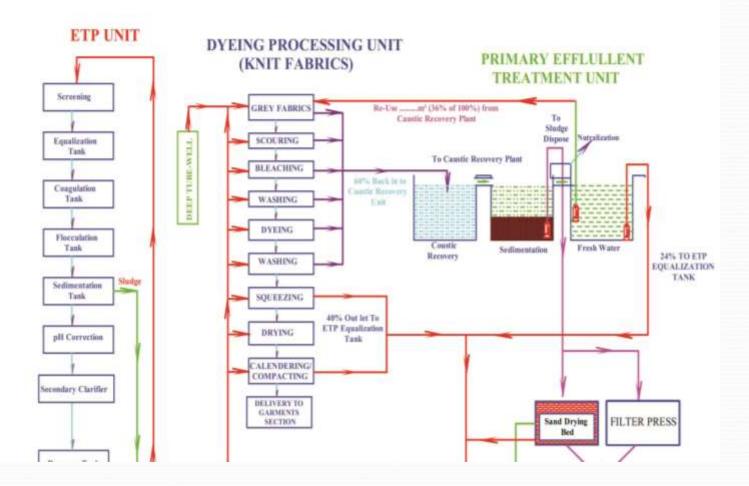


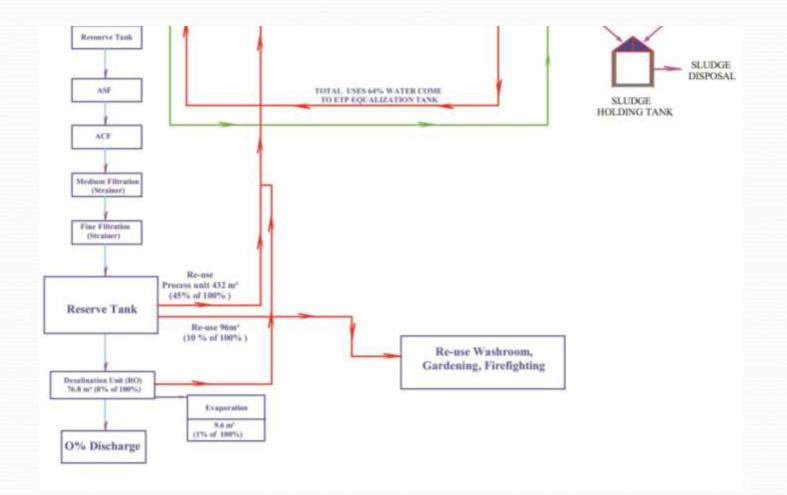


Wastewater Re-cycling 2nd Phase .

- Total Waste water Generation in this factory 960 m³/day.
- 55% Water re-use = 528 m³/day or 22 m³/hr.

2nd Phase-55% of 100% Re-cycle Process





Wastewater Re-cycling 3rd Phase.

- Total Waste water Generation in this factory 960 m³/day
- 8% Water re-use = 76.8 m³/day or $3.24 \text{ m}^3/\text{hr}$.

3rd Phase-8% of 100% Re-cycle Process

ab¨ev` Thank you all.