Contractor's Guide to Green Building Construction

Contractor's Guide to Green Building Construction

Management, Project Delivery, Documentation, and Risk Reduction

Thomas E. Glavinich, D.E., P.E.

The University of Kansas

John Wiley & Sons, Inc.

100% TOTAL RECYCLED PAPER 100% POSTCONSUMER PAPER

This book is printed on acid-free paper. ∅

Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information about our other products and services, please contact our Customer Care Department within the United States at (800) 762–2974, outside the United States at (317) 572–3993 or fax (317) 572–4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Glavinich, Thomas E.

The AGC contractor's guide to green building construction : management, project delivery, documentation, and risk reduction / Thomas E. Glavinich. p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-05621-9 (cloth)
1. Sustainable buildings—Design and construction. 2. Sustainable architecture. 3. Construction industry—Management. I. Title. TH880.G53 2008
690—dc22

2007039330

Printed in the United States of America

 $10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$

Contents

Forev	vord		XV
Prefa	ce		xix
Ackn	owledgr	nents	xxiii
СНАР	PTER 1.	GREEN CONSTRUCTION AND THE CONTRACTOR	1
1.1	Introdu	uction	1
1.2	Sustain	able Development: What is it?	2
1.3	Green	Building Defined	2
1.4	Green	Construction: Reactive or Proactive?	3
1.5	Green	Construction without Green Design?	4
1.6	What i	s Green Construction?	5
1.7	Green	is Lean	5
1.8	The G	reen Contractor	6
1.9	Advan	tages of being Green	6
1.10	Overvi	iew of this Book	6
1.11	Case S	tudies	9
1.12	Refere	ences	13
СНАР	PTER 2.	ELEMENTS OF GREEN CONSTRUCTION	15
2.1	Introdu	uction	15
2.2	Green	Building Evaluation Systems	16
2.3	LEED	TM Certification	17
	2.3.1	U.S. Green Building Council	17
	2.3.2	LEED [™] Rating Systems	18

	2.3.3	LEED TM -NC Certification Process	19
	2.3.4	Information on the LEED [™] Rating System	23
	2.3.5	Projects, Not Products, Are LEED TM Certified	23
	2.3.6	LEED TM -Accredited Professionals	24
2.4	Green (Globes [™] Certification	24
	2.4.1	Origins of Green Globes [™]	24
	2.4.2	Green Building Initiative	25
	2.4.3	Green Globes [™] Rating System	25
	2.4.4	Green Globes [™] Self-Assessment	27
	2.4.5	Green Globes TM Certification	27
	2.4.6	Green Globes TM Verification Process	29
	2.4.7	Information on the Green Globes TM Rating System	29
2.5	Additio	nal Rating Systems	30
2.6	Case St	udy	30
2.7	Referen	nces	32
CHA	PTER 3.	JNDERSTANDING GREEN PROJECT REQUIREMENTS	33
3.1	Introdu	ction	33
3.2	Impact	of Green Requirements	33
3.3	Green l	Project Delivery	34
	3.3.1	Importance of Green Project Delivery	34
	3.3.2	What Is a Project Delivery System?	35
	3.3.3	Project Delivery System Categories	36
3.4	Green l	Design-Bid-Build	37
3.5	Green (Construction Manager At-Risk	38
3.6	Green l	Design-Build	39
	3.6.1	Design-Build Overview	39
	3.6.2	One-Stage Design-Build Process	40
	3.6.3	Two-Stage Design-Build Process	40
	3.6.4	Design-Build Variations	41
	3.6.5	Managing the Green Design Process	42
3.7	Contrac	ctor Selection Methods	42
	3.7.1	Price-Based Selection	42
	3.7.2	Qualifications-Based Selection	43
	3.7.3	Best-Value Selection	43
3.8	Green S	Scope of Work Impact	44
3.9	Identify	ring Green Requirements	44
3.10	Specific	cations	44
	3.10.1	Specifications Defined	44

	3.10.2	Specification Types	45
	3.10.3	Conflicting Green Specifications	47
	3.10.4	Mixed Green Specifications	47
3.11	CSI Ma	ısterFormat [™]	48
	3.11.1	CSI MasterFormat [™] Background	48
	3.11.2	2004 MasterFormat [™] Groups	48
	3.11.3	General Requirements Subgroup—Division 01	49
	3.11.4	Facility Construction Subgroup	52
	3.11.5	Facility Services Subgroup	53
	3.11.6	1995 CSI MasterFormat TM References	53
	3.11.7	A Word of Caution	54
3.12	Green l	Requirements on Drawings	54
3.13	Case St	udy	55
3.14	Referen	nces	57
СНАР	PTER 4. (CONTRACTING FOR GREEN CONSTRUCTION	59
4.1	Intoduc	ction	59
4.2	Consult	t Your Advisors	59
4.3	Contra	ct Purpose	60
4.4	Where	is the Risk?	60
4.5	Managi	ng Green Construction Risk	61
	4.5.1	Risk Retention	61
	4.5.2	Risk Reduction	62
	4.5.3	Risk Transfer	63
	4.5.4	Risk Avoidance	64
4.6	Owner	-Contractor Agreement	64
	4.6.1	Conditions of Contract	65
	4.6.2	Drawings and Specifications	68
	4.6.3	Addenda	69
	4.6.4	Other Listed Documents	69
4.7	Green l	Design-Build Requirements	70
	4.7.1	Design-Build Project Delivery	70
	4.7.2	Contract Documents	70
	4.7.3	Design-Build Risk	70
	4.7.4	Establish Measurable Design-Build Performance	
		Requirements	71
4.8	Order o	of Contract Document Precedence	72
4.9	Insuran	ce Coverage on Green Projects	73
4.10	Bondin	g Requirements on Green Projects	73

4.11	Case St	udy	73
4.12	Referen	nces	76
CHAF	PTER 5.	MANAGING GREEN DESIGN	77
5.1	Introdu	iction	77
5.2	Designo	er Defined	77
5.3	Design-Build as a Project Delivery System		
5.4	Design-Builder Defined		
5.5	Design-	-Build is a Team Effort	79
	5.5.1	Relationship between Contractor and Designer	79
	5.5.2	Designer Organization	79
5.6	What N	Aakes a Successful Design-Build Project?	80
5.7	Unders	tanding Owner Needs and Expectations	81
	5.7.1	Owner Needs and Expectations	81
	5.7.2	Owner's Project Criteria	82
	5.7.3	Owner's Project Criteria as a Contract Document	83
	5.7.4	Importance of Measurable Green Criteria	83
	5.7.5	Establishing Measurable Green Criteria	85
	5.7.6	Beware of Hidden Green Requirements	
		and Conflicts	86
	5.7.7	Basis for Commissioning Plan	86
5.8	Selectin	ng a Designer	87
	5.8.1	Need for a Designer	87
	5.8.2	Defining the Design Firm's Scope of Services	87
	5.8.3	Identifying and Selecting a Designer	87
	5.8.4	Professional Qualifications	90
5.9	Contra	cting with the Designer	91
	5.9.1	Design Contract Scope	91
	5.9.2	Design Contract Requirements	91
	5.9.3	Design Contract Format	92
	5.9.4	Use of Purchase Orders	92
	5.9.5	Alignment between Agreements	93
5.10	Professi	ional Liability Insurance	93
	5.10.1	Professional Liability Insurance Overview	93
	5.10.2	Need for Professional Liability Insurance	94
	5.10.3	Insurance Coverage Period	94
	5.10.4	Example Contractual Requirement for Professional	
		Liability Insurance	96

5.11	The De	esign Process	96
	5.11.1	Six Design Phases	96
	5.11.2	Use of the Design Phases	98
5.12	Perforn	1 Regular Design Reviews	99
	5.12.1	Need for Regular Design Reviews	99
	5.12.2	Types of Design Reviews	99
5.13	Managi	ng the Design Process	100
	5.13.1	Establishing Design Documentation Requirements	100
	5.13.2	Design Change and Modification Procedure	101
	5.13.3	Plan and Schedule the Design Process	101
5.14	Case St	udy	101
5.15	Referen	nces	106
СНАР	PTER 6. (GREEN SUBCONTRACTING	109
6.1	Introdu	ction	109
6.2	Green S	Subcontracting	109
6.3	Why ar	e Subcontractors Important on Green Projects?	111
6.4	Specialt	y Contractor Prequalification	112
6.5	Definin	g Subcontractor Scope	114
6.6	Basis fo	r Green Scope of Work	115
6.7	Establis	hing Green Criteria	116
6.8	Green l	Processes and Procedures	116
6.9	Educate Specialty Contractors		117
6.10	Subcontractor Selection		117
6.11	Subcon	tract Terms and Conditions	119
	6.11.1	Current Model Contract Documents	119
	6.11.2	Subcontract Documents	119
	6.11.3	Green Flow-Through Requirements	119
	6.11.4	Implicit Green Requirements	120
	6.11.5	Subcontractor Green Submittals	121
	6.11.6	Subcontractor Design Management Responsibilities	122
	6.11.7	System Startup and Commissioning	123
	6.11.8	Early Startup of Building Systems	123
6.12	Trainin	g Subcontractors On-Site	124
6.13	Case St	udy	125
6.14	Referen	nces	129

CHA	PTER 7.	GREEN PROCUREMENT	131
7.1	Introdu	iction	131
7.2	Buildin	g Product Life Cycle	131
	7.2.1	Raw Material Extraction/Harvesting	131
	7.2.2	Raw Material Transport	133
	7.2.3	Raw Material Conversion	134
	7.2.4	Converted Material Transport	134
	7.2.5	Product Manufacture	134
	7.2.6	Product Transport	134
	7.2.7	Building Product Installation	134
	7.2.8	Building Product Use	135
	7.2.9	Building Product Removal	135
	7.2.10	Building Product Disposition	135
	7.2.11	Transport Salvaged Product	136
	7.2.12	Refurbish Product	136
	7.2.13	Transport Refurbished Product	137
	7.2.14	Recover Material	137
	7.2.15	Transport Recovered Material	137
	7.2.16	Landfill/Incinerate Waste	137
7.3	Where	are the Green Building Product Requirements?	138
	7.3.1	Specific Requirements	138
	7.3.2	General Performance Requirements	138
	7.3.3	Partial Performance Requirements	139
	7.3.4	Need to Understand Green Building Product	
		Requirements	139
7.4	Subcon	ntractor Procurement Responsibility	139
7.5	Green	Building Product Characteristics	140
	7.5.1	Resource Efficiency	140
	7.5.2	Waste Minimization	143
	7.5.3	Indoor Air Quality	145
	7.5.4	Energy Efficiency	146
	7.5.5	Water Conservation	146
7.6	Green	Building Product Screening Process	146
	7.6.1	Step 1: Research	147
	7.6.2	Step 2: Evaluate	147
	7.6.3	Step 3: Select	147
7.7	Green	Procurement Process	147
	7.7.1	Green Building Product Requirements Analysis	148
	7.7.2	Supplier RFQ Development	151

	7.7.3	Product Procurement Process	156 159
78	7.7.4	Establish a Procurement Procedure	159
7.0	R efere	nces	162
1.)	Refere	lices	102
CHAF	PTER 8.	CONSTRUCTING A GREEN PROJECT	163
8.1	Introdu	action	163
8.2	Green	Construction Process	163
8.3	Green	Construction Planning and Scheduling	165
8.4	Workf	orce Conservation	166
	8.4.1	Need to Conserve the Workforce	166
	8.4.2	Safety	166
	8.4.3	Ergonomics	167
	8.4.4	Use of Local Workforce	167
8.5	Materia	al Conservation	167
	8.5.1	Material Conservation Planning	168
	8.5.2	Material Conservation Strategies	168
8.6	Site La	yout and Use	171
	8.6.1	Set Construction Boundaries	172
	8.6.2	Restrict Vehicle and Equipment Movement	172
	8.6.3	Establish Trailer, Storage, and Laydown Areas	173
	8.6.4	Prevent Site Erosion and Sediment Runoff	173
	8.6.5	Manage Stormwater and Wastewater	173
8.7	Constr	uction Waste Management	174
8.8	Materia	al Storage and Protection	175
8.9	Provid	ing a Healthy Work Environment	176
8.10	Creatir	ng an Environmentally Friendly Jobsite	178
8.11	Constr	uction Equipment Selection and Operation	179
8.12	Docum	nenting Green Construction	180
8.13	Case St	tudy	182
8.14	Refere	nces	188
СНАР	PTER 9.	GREEN PROJECT COMMISSIONING AND CLOSEOUT	189
9.1	Introdu	action	189
9.2	Buildin	ng Commissioning Purpose and Objectives	189
9.3	Buildir	g Commissioning Defined	190
9.4	Owner	Building Commissioning Benefits	190
	9.4.1	Verified Equipment and System Operation	191
	9.4.2	Established Baseline System Performance	192

	9.4.3	Reduced Operating Costs	192
	9.4.4	Improved Occupant Well-Being	193
	9.4.5	Increased System Reliability and Maintainability	193
9.5	Commi	issioning as a Quality Assurance Program	193
	9.5.1	Contractor Building Commissioning Benefits	193
	9.5.2	What is Quality?	194
	9.5.3	Quality Control	194
	9.5.4	Quality Assurance	195
	9.5.5	Quality Planning	195
9.6	Contra	ctor's Responsibility for Building Performance	196
	9.6.1	Importance of Understanding Responsibility	
		for Building Performance	196
	9.6.2	Determining Responsibility for Building	
		Performance	196
9.7	Buildin	g Commissioning Extent and Timing	199
9.8	Project	Commissioning Requirements	199
	9.8.1	Contractor Needs to Understand Commissioning	
		Requirements	200
	9.8.2	Defining Subcontractor Scopes of Work	200
	9.8.3	1995 CSI MasterFormat [™]	201
	9.8.4	2004 CSI MasterFormat [™]	202
	9.8.5	Division 25—Integrated Automation	203
9.9	Basic B	uilding Commissioning Process	206
	9.9.1	Equipment Commissioning	206
	9.9.2	Subsystem Commissioning	206
	9.9.3	System Commissioning	207
	9.9.4	Integrated Systems Commissioning	207
	9.9.5	Building Commissioning	208
9.10	Commi	issioning Authority	208
	9.10.1	What is the Commissioning Authority's Role?	208
	9.10.2	Who Can Be the Commissioning Authority?	208
	9.10.3	Contractor as Commissioning Authority	210
	9.10.4	Commissioning Authority Qualifications	210
	9.10.5	Commissioning Authority Responsibilities	211
9.11	Commi	issioning Plan	212
9.12	Commi	issioning Team	212
9.13	Commi	ssioning Activities	214
	9.13.1	Prefunctional Equipment Testing	214
	9.13.2	Control System Checkout and Testing	217

	9.13.3	Testing, Adjusting, and Balancing	217
	9.13.4	Functional Testing	218
	9.13.5	Operational Training	219
	9.13.6	Commissioning and Closeout Submittals	220
9.14	Project	Functional Completion	220
9.15	Workin	ng with an Outside Commissioning Authority	221
	9.15.1	Contractor Interaction with Outside Commissioning	
		Authority	221
	9.15.2	Understand the Commissioning Requirements	222
	9.15.3	Subcontractor Commissioning Requirements	223
	9.15.4	Interaction with the Commissioning Authority	223
	9.15.5	Finalizing the Commissioning Plan	224
	9.15.6	Ongoing Commissioning Authority Interaction	224
	9.15.7	Equipment and System Documentation	
		and Submittals	224
	9.15.8	Create a Commissioning File	225
	9.15.9	Preparation and Submission of O&M Manuals	226
9.16	Case St	udy	228
9.17	Referer	nces	231
APPE	NDIX A.	GLOSSARY OF GREEN TERMS AND ABBREVIATIONS	233
	Referen	nces	248
			2 4 0
APPE	NDIX B.	REFERENCES AND ADDITIONAL INFORMATION	249
	Green I	Building Organizations and Rating Systems	249
	The As	sociated General Contractors of America	250
	The Co	onstruction Specifications Institute	250
	Sheet N	Aetal and Air Conditioning Contractors' Association,	
	lnc.		250
	Glossari	ies of Terms, Abbreviations, and Acronyms	251
	Select N	Material and Equipment Standards and Listing	251
	Select (Green Building Studies	252
	Select E	Building Commission Guides and Specifications	252
	Select (Green Building Web Sites	252
	Select E	Books on Green Building Design and Estimating	253
	Select (Freen Building Periodicals and Newsletters	253
Index	(255

Foreword

I remember when I was four or maybe five years old, seeing my grandfather pull up in my driveway in a great big dump truck. His father's name, his company's name, was painted in big red letters on the side of that bright white Mac truck. My grandfather owned a construction company, and on this sunny Saturday morning, he was delivering a load of sand for the sandbox in the backyard. This was my first realization that my grandfather and his father before him owned a construction firm. Seeing him standing out on the running board of that truck triggered a feeling inside of me—a feeling that he loved what he did and was proud to be a part of a great industry. As I grew older, that image never faded; it only grew stronger. By the time I was 10 years old, I knew that I wanted to work for my grandfather. I wanted to be a truck driver. As the years went by, I realized it was not a truck driver I wanted to be, it was being a part of the industry in which he was so successful.

Just like my direction in professions changed, so did the focus of this company. When my great-grandfather started his company, the primary focus was concrete flatwork. As the company grew, they moved into larger projects, and by the time I had that first glimpse into my legacy, the company had a primary focus in roads and bridges. By the time I was old enough to hold a real job, the company performed virtually no roadwork and had diversified into steel fabrication, commercial buildings, heavy industrial, healthcare, and the installation of process automation equipment. I progressed from a copy boy through the ranks of project management to the level of vice president before launching a subsidiary sustainability consulting firm. What does this evolution of one firm have to do with green building and this book? In today's changing world, it is hard to read through a trade publication or a mainstream magazine without seeing a story about green buildings. Even magazines like *Vanity Fair* and *Sports Illustrated* have had issues that deal with this topic. When you read these articles, you see words used to describe the movement like *green, integrated design, sustainability, high-performance buildings, living buildings, integrated delivery, next-generation buildings,* and organizations like the Green Building Initiative (GBI), U.S. Green Building Council (USGBC), National Institute of Building Sciences (NIBS), General Services Administration (GSA), Environmental Protection Agency (EPA), and Architecture 2030 just to list a few. What does all of this mean? Who are all of these people, and why are they putting such a tremendous amount of effort into this movement when many of us may dismiss it as a passing fad?

When you look at the profile of most successful companies, you find that one key to success is the ability to change and adapt to the marketplace. The executives who run those successful companies scan the business horizon for indicators that show them which way to steer their firms. Those of us who are lucky enough to work in the construction industry are experiencing a change that has not been seen before. The external effects of global climate changes, diminishing amounts of raw and manufactured goods, a shrinking labor pool, an increased amount of governmental regulation, and rising energy costs combined with the internal forces of shorter time schedules, lower margins, a mix of delivery methods, and changes in the insurance market have forced all of us to reevaluate the way we deliver our services to the marketplace. We are seeing an evolutionary progression in the way buildings are designed and constructed. We are seeing the green movement take our industry by storm. All of us in the construction industry need to understand what this means and how it may affect our businesses.

In the recent past, many of us who work in the construction industry have been labeled as a "necessary evil," a part of the delivery supply chain that is bought and sold as a commodity, forced to compete using the lowest common denominator—price. Long past are the days when we were respected for the quality of services we delivered, when we were respected as "master builders." I feel that the green movement can be looked at in two ways. It can be viewed as just another trend that we as professionals need to understand in order to continue to compete using the lowest common denominator, but it could also be looked at as a way for the construction industry to regain a higher level of respect. Our ability to solve complex problems and demonstrate quality can help all of us regain the position of the master builder. The Associated General Contractors of America (AGC) commissioned this book to aid construction professionals from any tier to understand what it takes to compete and to be more successful in the marketplace. The author and those who contributed to this book have drawn on extensive research and real-life experience to define the terms used in this segment of the industry, the risks associated with these types of construction projects, and how best to manage a "green" project. Our intent was to provide guidance to contractors. The structure of the book follows the progression of a project, from acquisition through project closeout. It delineates the typical project activities and explains how normal deliverables need to be modified when working on a green project. It is our hope that this book will help contractors navigate the challenges of green projects and emerge better able to take advantage of the multitude of benefits these projects offer.

THOMAS A. TAYLOR

General Manager Vertegy, an Alberici Enterprise

Thomas Taylor is a member of the AGC Environmental Network Steering Committee and has served as Chair on the association's Green Construction Task Force. Thomas Taylor also participates on the ANSI Technical Committee charged with developing the first ever consensus based national standard on green building, Green Globes. The Alberici headquarters has received the highest level of certification provided both the U.S. Green Building Council and the Green Building Initiative programs, as well as other awards and recognition. Chapter 4 of this publication includes a case study on the Alberici headquarters.

Preface

Today, the state of the environment and our impact on it is a topic of discussion and debate at all levels of government, as well as in the corporate board room and across the table at the local diner. In the past, the focus was on the industrial and transportation sectors of our economy, and commercial and institutional buildings escaped a lot of public scrutiny because they appeared to be benign environmentally. Commercial and institutional buildings do not openly belch smoke, deplete natural resources, use foreign oil, or pollute the land or water supply. However, over the past decades we have become increasingly aware of the amount of energy being consumed by commercial and institutional buildings and the impact that their construction and operation has on our environment. Even though they do not openly appear to contribute to the environmental problems that we face today, their construction and operation results in all of the aforementioned environmental impacts as we clear land for their construction, use precious natural resources to manufacture the materials used to construct them, dispose of all sorts of waste throughout their life, and use fossil fuels directly in the form of natural gas or indirectly in the generation of electricity to operate them. The importance of the commercial sector and commercial and institutional buildings to our economy will grow in the future as the United States continues its shift from a manufacturing and industrial-based economy to a service economy, which will compound the problem if we do not take action today.

Economic growth is the key to improving our quality of life in the United States, and we will need to continue to build and operate commercial and institutional buildings in the future. We need these buildings to support our growing population and to provide healthy and productive environments for people to live, work, and play. Reconciling the seemingly opposing goals of improving the environment and providing the needed infrastructure to support economic growth is the genesis of the green building movement. The green building movement is simply about being mindful of the potential impact that the construction and operation of commercial and institutional buildings will have on the environment and devising innovative strategies to mitigate or eliminate these impacts. This means changing the way we think about buildings and their construction and operation as well as the integration of new state-of-the-art technologies into buildings. In short, we are finding that we can have our cake and eat it too. Today, building owners, designers, manufacturers, and contractors are focused on achieving increasingly environmentally friendly and energy- efficient buildings, with the ultimate goal of producing environmentally and energy-neutral buildings in the not-too-distant future. The green building movement will provide new opportunities and challenges for contractors as high-performance buildings move into the mainstream and become the norm in the United States.

Helping contractors recognize and address the challenges of green building construction is what this book is all about. Green buildings are as much about construction as they are about design. Green designs must be implemented and documented by the contractor for the building to become a reality and achieve its potential. Sustainable building design and construction can impact the contractor's material and equipment procurement, sequencing and scheduling of work, jobsite productivity, and commissioning and closeout activities. Green requirements may impat not only impact the direct costs of construction, but also project and home office overhead resulting from increased administrative, documentation, and commissioning requirements. All of these potential impacts must be recognized and accounted for when bidding, contracting for, constructing, and closing out a green building project.

The purpose of this book is to provide the contractor with a guide to effectively bidding, contracting for, constructing, and closing out a green building project. This book is focused on the green building process from the contractor's viewpoint and its potential impact on project management, delivery, documentation, and risk. This book is not about green design or the ins or outs of any particular green building rating system that have already been addressed in many other publications. Instead, this book is focused on the contractor's business and construction processes and how they may be affected by green construction. This book addresses the overall construction process, including understanding green project requirements for bidding, contracting for green construction, managing green design when the contractor is operating as a design-builder, subcontracting on green projects, green procurement, managing green construction, and green project commissioning and closeout. It is our hope that the information contained in this book will help contractors who are new to the green building market enter it more confidently and provide contractors who are already working in this market with new insights that will help them reduce their risk and be more competitive.

The green building market is an emerging market, and this book represents a snapshot of this new market today and contractors' experiences to date. The green building market will continue to evolve as more public and private building owners demand high-performance buildings and that their commitment to the environment be recognized through green building certification. Existing green building rating systems will continue to change, and new rating systems will emerge as sustainable buildings become increasingly mainstream, our understanding of what makes a green building continues to evolve, and new design and construction techniques, materials, equipment, and systems become available. Also, government agencies at all levels are beginning to require that public and private buildings under their jurisdiction be certified or certifiable using a specified third-party green building rating systems. This is an exciting time in the building industry, with many changes and opportunities for contractors. However, to be successful, contractors must keep up with the rapid pace of change in order to compete in this emerging market.

Thomas E. Glavinich, D.E., P.E. The University of Kansas Lawrence, Kansas

Acknowledgments

The author would like to thank The Associated General Contractors of America (AGC), the AGC staff, and the AGC membership for their help and support throughout this project. This includes the AGC Green Building Task Force members who freely gave of their time, knowledge, and experience. Without the AGC and the input from its members, this book would not have been possible.

I would also like to take this opportunity to recognize and thank several individuals who worked closely with me throughout this project, providing detailed reviews of chapter drafts and invaluable input and suggestions. These include Melinda Tomaino, Associate Director of Environmental Services at AGC; Thomas Taylor, Vertegy: An Alberici Enterprise; Joshua Bomstein, Creative Contractors, Inc.; and Daniel Osterman, McGough Construction Company, Inc.

AGC GREEN BUILDING TASK FORCE

Joshua Bomstein	Creative Contractors, Inc.	Clearwater, Florida	
Dirk Elsperman	Tarlton Corporation	St. Louis, Missouri	
Chris Miller	Brasfield & Gorrie, LLC	Birmingham,	
		Alabama	
Daniel Osterman	McGough Construction	St.Paul, Minnesota	
	Company, Inc.		
Kimberly Pexton	HITT Contracting, Inc.	Fairfax, Virginia	
Beth Studley	Holder Construction Company	Atlanta, Georgia	
Thomas Taylor	Vertegy: An Alberici Enterprise	St. Louis, Missouri	
Melinda Tomaino	The Associated General	Arlington, Virginia	
	Contractors		
Mark Winslow	Gilbane, Inc.	Providence, Rhode	
		Island	xxiii