Courtesy : en.wikipedia.org
Organic farming
Organic farming also known as ecological farming or biological farming, is an agricultural system that uses fertilizers of organic origin such as compost manure, green manure, and bone meal and places emphasis on techniques such as crop rotation and companion planting. It originated early in the 20th century in reaction to rapidly changing farming practices. Certified organic agriculture accounts for 70 million hectares (170 million acres) globally, with over half of that total in Australia. Organic farming continues to be developed by various organizations today. Biological pest control, mixed cropping and the fostering of insect predators are encouraged. Organic standards are designed to allow the use of naturally-occurring substances while prohibiting or strictly limiting synthetic substances. For instance, naturally-occurring pesticides such as pyrethrin are permitted, while synthetic fertilizers and pesticides are generally prohibited. Synthetic substances that are allowed include, for example, copper sulfate, elemental sulfur and Ivermectin. Genetically modified organisms, nanomaterials, human sewage sludge, plant growth regulators, hormones, and antibiotic use in livestock husbandry are prohibited.Organic farming advocates claim advantages in sustainability, openness, self-sufficiency, autonomy and independence, health, food security, and food safety.
Organic agricultural methods are internationally regulated and legally enforced by many nations, based in large part on the standards set by the International Federation of Organic Agriculture Movements (IFOAM), an international umbrella organization for organic farming organizations established in 1972. Organic agriculture can be defined as “an integrated farming system that strives for sustainability, the enhancement of soil fertility and biological diversity while, with rare exceptions, prohibiting synthetic pesticides, antibiotics, synthetic fertilizers, genetically modified organisms, and growth hormones”.
Since 1990, the market for organic food and other products has grown rapidly, reaching $63 billion worldwide in 2012. This demand has driven a similar increase in organically-managed farmland that grew from 2001 to 2011 at a compounding rate of 8.9% per annum.
As of 2020, approximately 75,000,000 hectares (190,000,000 acres) worldwide were farmed organically, representing approximately 1.6% of total world farmland.
Organic farming can be beneficial on biodiversity and environmental protection at local level. However, because organic farming has lower yields compared to conventional farming, additional agricultural land is needed elsewhere in the world, which means that natural land has to be converted into agricultural land. This can cause loss of biodiversity and negative climate effects that outweigh the local environmental gains achieved.
History
Main article: History of organic farming
Agriculture was practiced for thousands of years without the use of artificial chemicals. Artificial fertilizers were first developed during the mid-19th century. These early fertilizers were cheap, powerful, and easy to transport in bulk. Similar advances occurred in chemical pesticides in the 1940s, leading to the decade being referred to as the ‘pesticide era’.These new agricultural techniques, while beneficial in the short-term, had serious longer-term side-effects such as soil compaction, erosion, and declines in overall soil fertility, along with health concerns about toxic chemicals entering the food supply. In the late 1800s and early 1900s, soil biology scientists began to seek ways to remedy these side effects while still maintaining higher production.
In 1921 the founder and pioneer of the organic movement Albert Howard and his wife Gabrielle Howard, accomplished botanists, founded an Institute of Plant Industry to improve traditional farming methods in India. Among other things, they brought improved implements and improved animal husbandry methods from their scientific training; then by incorporating aspects of Indian traditional methods, developed protocols for the rotation of crops, erosion prevention techniques, and the systematic use of composts and manures.Stimulated by these experiences of traditional farming, when Albert Howard returned to Britain in the early 1930 she began to promulgate a system of organic agriculture.
In 1924 Rudolf Steiner gave a series of eight lectures on agriculture with a focus on influences of the moon, planets, non-physical beings and elemental forces.They were held in response to a request by adherent farmers who noticed degraded soil conditions and a deterioration in the health and quality of crops and livestock resulting from the use of chemical fertilizers. The lectures were published in November 1924; the first English translation appeared in 1928 as The Agriculture Course.
In July 1939, Ehrenfried Pfeiffer, the author of the standard work on biodynamic agriculture (Bio-Dynamic Farming and Gardening), came to the UK at the invitation of Walter James, 4th Baron Northbourne as a presenter at the Betteshanger Summer School and Conference on Biodynamic Farming at Northbourne’s farm in Kent.One of the chief purposes of the conference was to bring together the proponents of various approaches to organic agriculture in order that they might cooperate within a larger movement. Howard attended the conference, where he met Pfeiffer. In the following year, Northbourne published his manifesto of organic farming, Look to the Land, in which he coined the term “organic farming”. The Betteshanger conference has been described as the ‘missing link’ between biodynamic agriculture and other forms of organic farming.
In 1940 Howard published his An Agricultural Testament. In this book he adopted Northbourne’s terminology of “organic farming”. Howard’s work spread widely, and he became known as the “father of organic farming” for his work in applying scientific knowledge and principles to various traditional and natural methods. In the United States J.I. Rodale, who was keenly interested both in Howard’s ideas and in biodynamics, founded in the 1940s both a working organic farm for trials and experimentation, The Rodale Institute, and Rodale, Inc. in Emmaus, Pennsylvania to teach and advocate organic methods to the wider public. These became important influences on the spread of organic agriculture. Further work was done by Lady Eve Balfour (the Haughley Experiment) in the United Kingdom, and many others across the world.
The term “eco-agriculture” was coined in 1970 by Charles Walters, founder of Acres Magazine, to describe agriculture which does not use “man-made molecules of toxic rescue chemistry”, effectively another name for organic agriculture.
Increasing environmental awareness in the general population in modern times has transformed the originally supply-driven organic movement to a demand-driven one. Premium prices and some government subsidies attracted farmers. In the developing world, many producers farm according to traditional methods that are comparable to organic farming, but not certified, and that may not include the latest scientific advancements in organic agriculture. In other cases, farmers in the developing world have converted to modern organic methods for economic reasons.
Terminology
The use of “organic” popularized by Howard and Rodale refers more narrowly to the use of organic matter derived from plant compost and animal manures to improve the humus content of soils, grounded in the work of early soil scientists who developed what was then called “humus farming”. Since the early 1940s the two camps have tended to merge.[
Biodynamic agriculturists, on the other hand, used the term “organic” to indicate that a farm should be viewed as a living organism,in the sense of the following quotation:
“An organic farm, properly speaking, is not one that uses certain methods and substances and avoids others; it is a farm whose structure is formed in imitation of the structure of a natural system that has the integrity, the independence and the benign dependence of an organism”
— Wendell Berry, “The Gift of Good Land”
They based their work on Steiner’s spiritually-oriented alternative agriculture which includes various esoteric concepts.
Regulations
EU-organic production-regulation on “organic” food labels define “organic” primarily in terms of whether “natural” or “artificial” substances were allowed as inputs in the food production process.
Methods
Organic cultivation of mixed vegetables in Capay, California
“Organic agriculture is a production system that sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects. Organic agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved…”
— International Federation of Organic Agriculture Movements
Organic farming methods combine scientific knowledge of ecology and some modern technology with traditional farming practices based on naturally occurring biological processes. Organic farming methods are studied in the field of agroecology. While conventional agriculture uses synthetic pesticides and water-soluble synthetically purified fertilizers, organic farmers are restricted by regulations to using natural pesticides and fertilizers. An example of a natural pesticide is pyrethrin, which is found naturally in the Chrysanthemum flower. The principal methods of organic farming include crop rotation, green manures and compost, biological pest control, and mechanical cultivation. These measures use the natural environment to enhance agricultural productivity: legumes are planted to fix nitrogen into the soil, natural insect predators are encouraged, crops are rotated to confuse pests and renew soil, and natural materials such as potassium bicarbonateand mulches are used to control disease and weeds. Genetically modified seeds and animals are excluded.
While organic is fundamentally different from conventional because of the use of carbon-based fertilizers compared with highly soluble synthetic based fertilizers and biological pest control instead of synthetic pesticides, organic farming and large-scale conventional farming are not entirely mutually exclusive. Many of the methods developed for organic agriculture have been borrowed by more conventional agriculture. For example, Integrated Pest Management is a multifaceted strategy that uses various organic methods of pest control whenever possible, but in conventional farming could include synthetic pesticides only as a last resort.
Crop diversity
Organic farming encourages crop diversity. The science of Agroecology has revealed the benefits of polyculture (multiple crops in the same space), which is often employed in organic farming.Planting a variety of vegetable crops supports a wider range of beneficial insects, soil microorganisms, and other factors that add up to overall farm health. Crop diversity helps the environment to thrive and protects species from going extinct.
Soil management
Placard advocating organic food rather than global warming
Organic farming relies more heavily on the natural breakdown of organic matter than the average conventional farm, using techniques like green manure and composting, to replace nutrients taken from the soil by previous crops. This biological process, driven by microorganisms such as mycorrhiza and earthworms, releases nutrients available to plants throughout the growing season. Farmers use a variety of methods to improve soil fertility, including crop rotation, cover cropping, reduced tillage, and application of compost. By reducing fuel-intensive tillage, less soil organic matter is lost to the atmosphere. This has an added benefit of carbon sequestration, which reduces greenhouse gases and helps reverse climate change. Reducing tillage may also improve soil structure and reduce the potential for soil erosion.
Plants need a large number of nutrients in various quantities to flourish. Supplying enough nitrogen and particularly synchronization, so that plants get enough nitrogen at the time when they need it most, is a challenge for organic farmers Crop rotation and green manure (“cover crops”) help to provide nitrogen through legumes (more precisely, the family Fabaceae), which fix nitrogen from the atmosphere through symbiosis with rhizobial bacteria. Intercropping, which is sometimes used for insect and disease control, can also increase soil nutrients, but the competition between the legume and the crop can be problematic and wider spacing between crop rows is required. Crop residues can be ploughed back into the soil, and different plants leave different amounts of nitrogen, potentially aiding synchronization.[49] Organic farmers also use animal manure, certain processed fertilizers such as seed meal and various mineral powders such as rock phosphate and green sand, a naturally occurring form of potash that provides potassium. In some cases pH may need to be amended. Natural pH amendments include lime and sulfur, but in the U.S. some compounds such as iron sulfate, aluminum sulfate, magnesium sulfate, and soluble boron products are allowed in organic farming.
Mixed farms with both livestock and crops can operate as ley farms, whereby the land gathers fertility through growing nitrogen-fixing forage grasses such as white clover or alfalfa and grows cash crops or cereals when fertility is established. Farms without livestock (“stockless”) may find it more difficult to maintain soil fertility, and may rely more on external inputs such as imported manure as well as grain legumes and green manures, although grain legumes may fix limited nitrogen because they are harvested. Horticultural farms that grow fruits and vegetables in protected conditions often rely even more on external inputs. Manure is very bulky and is often not cost-effective to transport more than a short distance from the source. Manure for organic farms’ may become scarce if a sizable number of farms become organically managed.
Weed management
Organic weed management promotes weed suppression, rather than weed elimination, by enhancing crop competition and phytotoxic effects on weeds.Organic farmers integrate cultural, biological, mechanical, physical and chemical tactics to manage weeds without synthetic herbicides.
Organic standards require rotation of annual crops,meaning that a single crop cannot be grown in the same location without a different, intervening crop. Organic crop rotations frequently include weed-suppressive cover crops and crops with dissimilar life cycles to discourage weeds associated with a particular crop.Research is ongoing to develop organic methods to promote the growth of natural microorganisms that suppress the growth or germination of common weeds.
Other cultural practices used to enhance crop competitiveness and reduce weed pressure include selection of competitive crop varieties, high-density planting, tight row spacing, and late planting into warm soil to encourage rapid crop germination.
Mechanical and physical weed control practices used on organic farms can be broadly grouped as:
- Tillage – Turning the soil between crops to incorporate crop residues and soil amendments; remove existing weed growth and prepare a seedbed for planting; turning soil after seeding to kill weeds, including cultivation of row crops.
- Mowing and cutting – Removing top growth of weeds.
- Flame weeding and thermal weeding – Using heat to kill weeds.
- Mulching – Blocking weed emergence with organic materials, plastic films, or landscape fabric.
Some naturally sourced chemicals are allowed for herbicidal use. These include certain formulations of acetic acid (concentrated vinegar), corn gluten meal, and essential oils. A few selective bioherbicides based on fungal pathogens have also been developed. At this time, however, organic herbicides and bioherbicides play a minor role in the organic weed control toolbox.
Weeds can be controlled by grazing. For example, geese have been used successfully to weed a range of organic crops including cotton, strawberries, tobacco, and corn,reviving the practice of keeping cotton patch geese, common in the southern U.S. before the 1950s. Similarly, some rice farmers introduce ducks and fish to wet paddy fields to eat both weeds and insects.
Controlling other organisms
Chloroxylon is used for pest management in organic rice cultivation in Chhattisgarh, India.
See also: Biological pest control and Integrated Pest Management
Organisms aside from weeds that cause problems on farms include arthropods (e.g., insects, mites), nematodes, fungi and bacteria. Practices include, but are not limited to:
Examples of predatory beneficial insects include minute pirate bugs, big-eyed bugs, and to a lesser extent ladybugs (which tend to fly away), all of which eat a wide range of pests. Lacewings are also effective, but tend to fly away. Praying mantis tend to move more slowly and eat less heavily. Parasitoid wasps tend to be effective for their selected prey, but like all small insects can be less effective outdoors because the wind controls their movement. Predatory mites are effective for controlling other mites.
Naturally derived insecticides allowed for use on organic farms include Bacillus thuringiensis (a bacterial toxin), pyrethrum (a chrysanthemum extract), spinosad (a bacterial metabolite), neem (a tree extract) and rotenone (a legume root extract). Fewer than 10% of organic farmers use these pesticides regularly; a 2003 survey found that only 5.3% of vegetable growers in California use rotenone while 1.7% use pyrethrum. These pesticides are not always more safe or environmentally friendly than synthetic pesticides and can cause harm.The main criterion for organic pesticides is that they are naturally derived, and some naturally derived substances have been controversial. Controversial natural pesticides include rotenone, copper, nicotine sulfate, and pyrethrumsRotenone and pyrethrum are particularly controversial because they work by attacking the nervous system, like most conventional insecticides. Rotenone is extremely toxic to fishand can induce symptoms resembling Parkinson’s disease in mammals. Although pyrethrum (natural pyrethrins) is more effective against insects when used with piperonyl butoxide (which retards degradation of the pyrethrins), organic standards generally do not permit use of the latter substance.
Naturally derived fungicides allowed for use on organic farms include the bacteria Bacillus subtilis and Bacillus pumilus; and the fungus Trichoderma harzianum. These are mainly effective for diseases affecting roots. Compost tea contains a mix of beneficial microbes, which may attack or out-compete certain plant pathogens, but variability among formulations and preparation methods may contribute to inconsistent results or even dangerous growth of toxic microbes in compost teas.
Some naturally derived pesticides are not allowed for use on organic farms. These include nicotine sulfate, arsenic, and strychnine.
Synthetic pesticides allowed for use on organic farms include insecticidal soaps and horticultural oils for insect management; and Bordeaux mixture, copper hydroxide and sodium bicarbonate for managing fungi. Copper sulfate and Bordeaux mixture (copper sulfate plus lime), approved for organic use in various jurisdictions, can be more environmentally problematic than some synthetic fungicides disallowed in organic farming. Similar concerns apply to copper hydroxide. Repeated application of copper sulfate or copper hydroxide as a fungicide may eventually result in copper accumulation to toxic levels in soil, and admonitions to avoid excessive accumulations of copper in soil appear in various organic standards and elsewhere. Environmental concerns for several kinds of biota arise at average rates of use of such substances for some crops. In the European Union, where replacement of copper-based fungicides in organic agriculture is a policy priority, research is seeking alternatives for organic production.