Courtesy : en.wikipedia.org
Green wind energy
Wind power or wind energy is mostly the use of wind turbines to generate electricity. Wind power is a popular, sustainable, renewable energy source that has a much smaller impact on the environment than burning fossil fuels. Historically, wind power has been used in sails, windmills and windpumps but today it is mostly used to generate electricity. Wind farms consist of many individual wind turbines, which are connected to the electric power transmission network. New onshore (on-land) wind farms are cheaper than new coal or gas plants, but expansion of wind power is being hindered by fossil fuel subsidies.Onshore wind farms have a greater visual impact on the landscape than some other power stations.Small onshore wind farms can feed some energy into the grid or provide power to isolated off-grid locations. Offshore wind farms deliver more energy per installed capacity with less fluctuations and have less visual impact. Although there is less offshore wind power at present and construction and maintenance costs are higher, it is expanding.Offshore wind power currently has a share of about 10% of new installations
Wind power is variable renewable energy, so power-management techniques are used to match supply and demand, such as: wind hybrid power systems, hydroelectric power or other dispatchable power sources, excess capacity, geographically distributed turbines, exporting and importing power to neighboring areas, or grid storage. As the proportion of wind power in a region increases the grid may need to be upgraded.Weather forecasting allows the electric-power network to be readied for the predictable variations in production that occur.
In 2021, wind supplied over 1800 TWh of electricity, which was over 6% of world electricity and about 2% of world energy.With about 100 GW added during 2021, mostly in China and the United States, global installed wind power capacity exceeded 800 GW. To help meet the Paris Agreement goals to limit climate change, analysts say it should expand much faster – by over 1% of electricity generation per year.
Regions in the higher northern and southern latitudes have the highest potential for wind power.Installed capacity has reached 650 GW in 2019. In most regions, wind power generation is higher in the winter when PV output is low. For this reason, combinations of wind and solar power are recommended.
Wind energy
Global map of wind speed at 100 m above surface level.
Distribution of wind speed (red) and energy (blue) for all of 2002 at the Lee Ranch facility in Colorado. The histogram shows measured data, while the curve is the Rayleigh model distribution for the same average wind speed.
Wind energy is the kinetic energy of air in motion, also called wind. Total wind energy flowing through an imaginary surface with area A during the time t is:{\displaystyle E={\frac {1}{2}}mv^{2}={\frac {1}{2}}(Avt\rho )v^{2}={\frac {1}{2}}At\rho v^{3},}
where ρ is the density of air; v is the wind speed; Avt is the volume of air passing through A (which is considered perpendicular to the direction of the wind); Avtρ is therefore the mass m passing through A. 1⁄2 ρv2 is the kinetic energy of the moving air per unit volume.
Power is energy per unit time, so the wind power incident on A (e.g. equal to the rotor area of a wind turbine) is:{\displaystyle P={\frac {E}{t}}={\frac {1}{2}}A\rho v^{3}.}
Wind power in an open air stream is thus proportional to the third power of the wind speed; the available power increases eightfold when the wind speed doubles.
Wind is the movement of air across the surface of the Earth, driven by areas of high and low pressure.The global wind kinetic energy averaged approximately 1.50 MJ/m2 over the period from 1979 to 2010, 1.31 MJ/m2 in the Northern Hemisphere with 1.70 MJ/m2 in the Southern Hemisphere. The atmosphere acts as a thermal engine, absorbing heat at higher temperatures, releasing heat at lower temperatures. The process is responsible for the production of wind kinetic energy at a rate of 2.46 W/m2 thus sustaining the circulation of the atmosphere against friction.
Through wind resource assessment it is possible to estimate wind power potential globally, by country or region, or for a specific site. The Global Wind Atlas provided by the Technical University of Denmark in partnership with the World Bank provides a global assessment of wind power potential. Unlike ‘static’ wind resource atlases which average estimates of wind speed and power density across multiple years, tools such as Renewables.ninja provide time-varying simulations of wind speed and power output from different wind turbine models at an hourly resolution.More detailed, site-specific assessments of wind resource potential can be obtained from specialist commercial providers, and many of the larger wind developers have in-house modeling capabilities.
The total amount of economically extractable power available from the wind is considerably more than present human power use from all sources. The strength of wind varies, and an average value for a given location does not alone indicate the amount of energy a wind turbine could produce there.
To assess prospective wind power sites a probability distribution function is often fit to the observed wind speed data.Different locations will have different wind speed distributions. The Weibull model closely mirrors the actual distribution of hourly/ten-minute wind speeds at many locations. The Weibull factor is often close to 2 and therefore a Rayleigh distribution can be used as a less accurate, but simpler model.
Wind farms
Main articles: Wind farm and List of onshore wind farms
Wind farm | Capacity (MW) | Country | Refs |
---|---|---|---|
Gansu Wind Farm | 7,965 | China | [27] |
Muppandal wind farm | 1,500 | India | |
Alta (Oak Creek-Mojave) | 1,320 | United States | |
Jaisalmer Wind Park | 1,064 | India |
A wind farm is a group of wind turbines in the same location. A large wind farm may consist of several hundred individual wind turbines distributed over an extended area. The land between the turbines may be used for agricultural or other purposes. For example, Gansu Wind Farm, the largest wind farm in the world, has several thousand turbines. A wind farm may also be located offshore. Almost all large wind turbines have the same design — a horizontal axis wind turbine having an upwind rotor with 3 blades, attached to a nacelle on top of a tall tubular tower.
In a wind farm, individual turbines are interconnected with a medium voltage (often 34.5 kV) power collection systeand communications network. In general, a distance of 7D (7 times the rotor diameter of the wind turbine) is set between each turbine in a fully developed wind farm. At a substation, this medium-voltage electric current is increased in voltage with a transformer for connection to the high voltage electric power transmission system.