Courtesy : en.wikipedia.org

Green tidal energy

Although not yet widely used, tidal energy has the potential for future electricity generation. Tides are more predictable than the wind and the sun. Among sources of renewable energy, tidal energy has traditionally suffered from relatively high cost and limited availability of sites with sufficiently high tidal ranges or flow velocities, thus constricting its total availability. However, many recent technological developments and improvements, both in design (e.g. dynamic tidal power, tidal lagoons) and turbine technology (e.g. new axial turbines, cross flow turbines), indicate that the total availability of tidal power may be much higher than previously assumed and that economic and environmental costs may be brought down to competitive levels.

Historically, tide mills have been used both in Europe and on the Atlantic coast of North America. The incoming water was contained in large storage ponds, and as the tide goes out, it turns waterwheels that use the mechanical power to mill grain. The earliest occurrences date from the Middle Ages, or even from Roman times. The process of using falling water and spinning turbines to create electricity was introduced in the U.S. and Europe in the 19th century.

Electricity generation from marine technologies increased an estimated 16% in 2018, and an estimated 13% in 2019. Policies promoting R&D are needed to achieve further cost reductions and large-scale development. The world’s first large-scale tidal power plant was France’s Rance Tidal Power Station, which became operational in 1966. It was the largest tidal power station in terms of output until Sihwa Lake Tidal Power Station opened in South Korea in August 2011. The Sihwa station uses sea wall defense barriers complete with 10 turbines generating 254 MW.

Principle

Variation of tides over a day

Main articles: Tide and Tidal acceleration

Tidal energy is taken from the Earth’s oceanic tides. Tidal forces result from periodic variations in gravitational attraction exerted by celestial bodies. These forces create corresponding motions or currents in the world’s oceans. This results in periodic changes in sea levels, varying as the Earth rotates. These changes are highly regular and predictable, due to the consistent pattern of the Earth’s rotation and the Moon’s orbit around the Earth.The magnitude and variations of this motion reflect the changing positions of the Moon and Sun relative to the Earth, the effects of Earth’s rotation, and local geography of the seafloor and coastlines.

Tidal power is the only technology that draws on energy inherent in the orbital characteristics of the Earth–Moon system, and to a lesser extent in the Earth–Sun system. Other natural energies exploited by human technology originate directly or indirectly from the Sun, including fossil fuel, conventional hydroelectric, wind, biofuel, wave and solar energy. Nuclear energy makes use of Earth’s mineral deposits of fissionable elements, while geothermal power utilizes the Earth’s internal heat, which comes from a combination of residual heat from planetary accretion (about 20%) and heat produced through radioactive decay (80%).

A tidal generator converts the energy of tidal flows into electricity. Greater tidal variation and higher tidal current velocities can dramatically increase the potential of a site for tidal electricity generation.

Because the Earth’s tides are ultimately due to gravitational interaction with the Moon and Sun and the Earth’s rotation, tidal power is practically inexhaustible, and is thus classified as a renewable energy resource. Movement of tides causes a loss of mechanical energy in the Earth-Moon system: this results from pumping of water through natural restrictions around coastlines and consequent viscous dissipation at the seabed and in turbulence. This loss of energy has caused the rotation of the Earth to slow in the 4.5 billion years since its formation. During the last 620 million years the period of rotation of the Earth (length of a day) has increased from 21.9 hours to 24 hours; in this period the Earth-Moon system has lost 17% of its rotational energy. While tidal power will take additional energy from the system, the effect is negligible and would not be noticeable in the foreseeable future.

Methods

The world’s first commercial-scale and grid-connected tidal stream generator – SeaGen – in Strangford Lough.The strong wake shows the power in the tidal current.

Tidal power can be classified into four generating methods:

Tidal stream generator

Main article: Tidal stream generator

Tidal stream generators make use of the kinetic energy of moving water to power turbines, in a similar way to wind turbines that use the wind to power turbines. Some tidal generators can be built into the structures of existing bridges or are entirely submersed, thus avoiding concerns over aesthetics or visual impact. Land constrictions such as straits or inlets can create high velocities at specific sites, which can be captured using turbines. These turbines can be horizontal, vertical, open, or ducted.

Tidal barrage

Main article: Tidal barrage

Tidal barrages use potential energy in the difference in height (or hydraulic head) between high and low tides. When using tidal barrages to generate power, the potential energy from a tide is seized through the strategic placement of specialized dams. When the sea level rises and the tide begins to come in, the temporary increase in tidal power is channeled into a large basin behind the dam, holding a large amount of potential energy. With the receding tide, this energy is then converted into mechanical energy as the water is released through large turbines that create electrical power through the use of generators. Barrages are essentially dams across the full width of a tidal estuary.

Dynamic tidal power

Main article: Dynamic tidal power

Top-down diagram of a DTP dam. Blue and dark red colours indicate low and high tides, respectively.

Dynamic tidal power (or DTP) is a theoretical technology that would exploit an interaction between potential and kinetic energies in tidal flows. It proposes that very long dams (for example: 30–50 km length) be built from coasts straight out into the sea or ocean, without enclosing an area. Tidal phase differences are introduced across the dam, leading to a significant water-level differential in shallow coastal seas – featuring strong coast-parallel oscillating tidal currents such as found in the UK, China, and Korea. Induced tides (TDP) could extend the geographic viability of a new hydro-atmospheric concept ‘LPD’ (lunar pulse drum) discovered by a Devon innovator in which a tidal ‘water piston’ pushes or pulls a metered jet of air to a rotary air-actuator & generator. The principle was demonstrated at London Bridge June 2019. Plans for a 30 m, 62.5kwh ‘pilot’ installation on a (Local Authority) tidal estuary shoreline in the Bristol Channel are underway.

Tidal lagoon

A new tidal energy design option is to construct circular retaining walls embedded with turbines that can capture the potential energy of tides. The created reservoirs are similar to those of tidal barrages, except that the location is artificial and does not contain a pre-existing ecosystem. The lagoons can also be in double (or triple) format without pumping or with pumping that will flatten out the power output. The pumping power could be provided by excess to grid demand renewable energy from for example wind turbines or solar photovoltaic arrays. Excess renewable energy rather than being curtailed could be used and stored for a later period of time. Geographically dispersed tidal lagoons with a time delay between peak production would also flatten out peak production providing near baseload production at a higher cost than other alternatives such as district heating renewable energy storage. The cancelled Tidal Lagoon Swansea Bay in Wales, United Kingdom would have been the first tidal power station of this type once built.

Explore More

Green tidal energy

Courtesy : www.pnnl.gov Green tidal energy produced by the natural rise and fall of tides caused by the gravitational interaction between Earth, the sun, and the moon. Tidal currents with

Green tidal energy

Courtesy : en.wikipedia.org Green tidal energy Although not yet widely used, tidal energy has the potential for future electricity generation. Tides are more predictable than the wind and the sun. Among sources of renewable energy,

Green tidal energy

Green tidal energy Courtesy : Tidal energy is a form of renewable energy which is created by converting energy from tides into electricity using colorful styles. tides are more predictable