courtesy : en.wikipedia.org

Energy management

Energy management includes planning and operation of energy production and energy consumption units as well as energy distribution and storage. Objectives are resource conservation, climate protection and cost savings, while the users have permanent access to the energy they need. It is connected closely to environmental management, production management, logistics and other established business functions. The VDI-Guideline 4602 released a definition which includes the economic dimension: “Energy management is the proactive, organized and systematic coordination of procurement, conversion, distribution and use of energy to meet the requirements, taking into account environmental and economic objectives”. It is a systematic endeavor to optimize energy efficiency for specific political, economic, and environmental objectives through Engineering and Management techniques

Energy efficiency

Base line of energy assessment

One of the initial steps for an effective energy cost control program is the base line energy assessment, which examines the pattern of existing energy usage by the government or any sub-entity of the government or private organization. This program will set the reference point for improvements in energy efficiency. Energy efficiency can improve the existing energy usage and benchmarking of every individual section such as area, sub-area and the industry etc. .

Organizational integration

It is important to integrate the energy management in the organizational structure, so that the energy management can be implemented. Responsibilities and the interaction of the decision makers should be regularized. The delegation of functions and competencies extend from the top management to the executive worker. Furthermore, a comprehensive coordination can ensure the fulfillment of the tasks.

It is advisable to establish a separate organizational unit “energy management” in large or energy-intensive companies. This unit supports the senior management and keeps track. It depends on the basic form of the organizational structure, where this unit is connected. In case of a functional organization the unit is located directly between the first (CEO) and the second hierarchical level (corporate functions such as production, procurement, marketing). In a divisional organization, there should be a central and several sector-specific energy management units. So the diverse needs of the individual sectors and the coordination between the branches and the head office can be fulfilled. In a matrix organization the energy management can be included as a matrix function and thus approach most functions directly.

Energy management in operational functions

Facility management

Facility management is an important part of energy management, because a huge proportion (average 25 per cent) of complete operating costs are energy costs. According to the International Facility Management Association (IFMA), facility management is “a profession that encompasses multiple disciplines to ensure functionality of the built environment by integrating people, place, processes and technology.”

The central task of energy management is to reduce costs for the provision of energy in buildings and facilities without compromising work processes. Especially the availability and service life of the equipment and the ease of use should remain the same. The German Facility Management Association (GEFMA e.V.) has published guidelines (e.g. GEFMA 124-1 and 124–2), which contain methods and ways of dealing with the integration of energy management in the context of a successful facility management In this topic the facility manager has to deal with economic, ecological, risk-based and quality-based targets. He tries to minimize the total cost of the energy-related processes (supply, distribution and use).

The passive house uses a combination of low-energy building techniques and technologies.

The most important key figure in this context is kilowatt-hours per square meter per year (kWh/m2a). Based on this key figure properties can be classified according to their energy consumption.

  • Europe: In Germany a low-energy house can have a maximum energy consumption of 70 kWh/m2a.
  • North America: In the United States, the ENERGY STAR program is the largest program defining low-energy homes. Homes earning ENERGY STAR certification use at least 15% less energy than standard new homes built to the International Residential Code, although homes typically achieve 20–30% saving

In comparison, the passive house ultra-low-energy standard, currently undergoing adoption in some other European countries, has a maximum space heating requirement of 15 kWh/m2a. A passive house is a very well insulated and virtually airtight building. It does not require a conventional heating system. It is heated by solar gain and internal gains from people. Energy losses are minimized.

There are also buildings that produce more energy (for example by solar water heating or photovoltaic systems) over the course of a year than it imports from external sources. These buildings are called energy-plus-houses.

In addition, the work regulations manage competencies, roles and responsibilities. Because the systems also include risk factors (e.g. oil tanks, gas lines), you must ensure that all tasks are clearly described and distributed. A clear regulation can help to avoid liability risks.

Logistics

Carriage of goods

Logistics is the management of the flow of resources between the point of origin and the point of destination in order to meet some requirements, for example of customers or corporations. Especially the core logistics task, transportation of the goods, can save costs and protect the environment through efficient energy management. The relevant factors are the choice of means of transportation, duration and length of transportation and cooperation with logistics service providers.

The logistics causes more than 14% percent of CO2 emissions worldwide. For this reason the term Green Logistics is becoming increasingly important.

Possible courses of action in terms of green logistics are:

  • Shift to ecofriendly transport carrier such as railroad and waterway
  • Route and load optimization
  • Formation of corporate networks, which are connected by logistics service
  • Optimizing physical logistics processes by providing a sophisticated IT support

Besides transportation of goods, the transport of persons should be an important part of the logistic strategy of organizations. In case of business trips it is important to attract attention to the choice and the proportionality of the means of transport. It should be balanced whether a physical presence is mandatory or a telephone or video conference is just as useful. Home Office is another possibility in which the company can protect the environment indirectly.

Explore More

Energy management

•GGBC,Global green building council, green building council, building council, solar, biomass energy, resource conservation, cost savings, energy management, Avoid extra-load, additional infrastructure

Energy management

COURTESY  :  www.en-trak.com ENERGY MANAGEMENT     Energy management is the foundation for saving energy at your organization level. A recent study by the U.S. Energy Information Administration projected that world

Energy management

Courtesy : en.wikipedia.org Energy management Energy management includes planning and operation of energy production and energy consumption units as well as energy distribution and storage. Objectives are resource conservation, climate protection and cost savings, while the users have permanent