Courtesy : en.wikipedia.org

Green hydrogen

Green hydrogen (GH2 or GH2) is hydrogen generated by renewable energyor from low-carbon power.Green hydrogen has significantly lower carbon emissions than grey hydrogen, which is produced by steam reforming of natural gas, which makes up the bulk of the hydrogen market. Green hydrogen produced by the electrolysis of water is less than 0.1% of total hydrogen production. It may be used to decarbonize sectors which are hard to electrify, such as steel and cement production, and thus help to limit climate change.

The high cost of production is the main factor behind the low use of green hydrogen. Nonetheless, the hydrogen market is expected to grow, with some forecasts of the cost of hydrogen production falling from $6/kg in 2015 to around $2/kg by 2025. In 2020, major European companies announced plans to switch their truck fleets to hydrogen power.

Green hydrogen can be blended into existing natural gas pipelines, and also used to produce green ammonia, the main constituent of fertilizer production. It is suggested by hydrogen industry bodies that green ammonia will be cost-competitive with ammonia produced conventionally (gray ammonia) by 2030.

Definition

Green hydrogen is produced by using renewable energy to power the electrolysis of water.

Certified green hydrogen requires an emission reduction of >60-70% (depending on the certification body) below the benchmark emissions intensity threshold (= GHG emissions of grey hydrogen, for example benchmark values according to the renewable energy directive RED II).

Market

The high cost of production is the main factor behind the low use of green hydrogen. Nonetheless, the United States Department of Energy forecasts that the hydrogen market is expected to grow, with the cost of hydrogen production falling from $6/kg in 2015 to as low as $2/kg by 2025.The price of $2/kg is considered a potential tipping point that will make green hydrogen competitive against other fuel sources.

The majority of hydrogen produced globally in 2020 is derived from fossil fuel sources with 99% of hydrogen fuel coming from carbon-based sources, and is not green hydrogen.

Green hydrogen has significantly lower carbon emissions than grey hydrogen, which is produced by steam reforming of natural gas and represents 95% of the market. On the contrary, green hydrogen, specifically, that produced by electrolysis of water represents less than 0.1% of total hydrogen production.

Uses

According to BloombergNEF, “…hydrogen offers the greatest potential to decarbonize difficult-to-abate sectors like steel, cement and heavy duty transport.”Green hydrogen has been used in transportation, heating, and in the natural gas industry, and can be used to produce green ammonia.

Transportation

Hydrogen can be used as a hydrogen fuel for fuel cells or internal combustion engines. Hydrogen vehicles are not limited to automobiles, with trucks also being designed to run on green hydrogen. In 2020, major European companies announced plans to switch their truck fleets to hydrogen power.Additionally, hydrogen-powered aircraft are already being designed by Airbus, with a planned release of the first commercial aircraft by 2035.Nevertheless, Airbus has warned that hydrogen will not be widely used on aircraft before 2050.

Heating

Hydrogen can be used for cooking and heating within homes. Hydrogen heating has been proposed as an alternative to power most UK homes by 2050 The British government intends to launch demonstration projects to show how the fuel can power regions containing hundreds of homes.

Natural gas industry

Natural gas pipelines are sometimes used to transport hydrogen, but it is not without challenges. Many pipelines would need to be upgraded for hydrogen transport. The natural gas industry and its infrastructure could pose a roadblock to green hydrogen adoption for countries that intend to be carbon neutral. A pilot program in Cappelle-la-Grande‚ France has already mixed hydrogen into the gas grid of 100 homes. Natural gas-fired power plants can also be converted to burn hydrogen serving to provide backup power during periods of high demand.

Green ammonia production

Main article: Ammonia production § Sustainable ammonia production

Green hydrogen can be used to produce green ammonia, the main constituent of fertilizer production. The Hydrogen Council suggested in 2021 that green ammonia will be cost competitive with ammonia produced conventionally (gray ammonia) by 2030.

Explore More

Green hydrogen From Wikipedia, the free encyclopedia Jump to navigationJump to search Green hydrogen (GH2 or GH2) is hydrogen generated by renewable energy[1] or from low-carbon power.[2] Green hydrogen has significantly lower carbon emissions than grey hydrogen, which is produced

courtesy : wikipedia green hydroden Green hydrogen is hydrogen generated entirely by renewable energy[1] or from low-carbon power.[2] Green hydrogen has significantly lower carbon emissions than grey hydrogen, which is produced by steam reforming of natural gas, which makes up the bulk of